Different strokes?

Example of sorted data cards

Recently I’ve been developing and trialling learning tasks where the learner is working with a provided data set but has to do something “human” that motivates using a random sample as part of the strategy to learn something from the data.

Since I already had a tool that creates data cards from the Quick, Draw! data set, I’ve created a prototype for the kind of tool that would support this approach using the same data set.

I’ve written about the Quick, Draw! data set already:

For this new tool, called different strokes, users sort drawings into two or more groups based on something visible in the drawing itself. Since you have the drag the drawings around to manually “classify” them, the larger the sample you take, the longer it will take you.

There’s also the novelty and creativity of being able to create your own rules for classifying drawings. I’ll use cats for the example below, but from a teaching and assessment perspective there are SO many drawings of so many things and so many variables with so many opportunities to compare and contrast what can be learned about how people draw in the Quick, Draw!

Here’s a precis of the kinds of questions I might ask myself to explore the general question What can we learn from the data about how people draw cats in the Quick, Draw! game?

  • Are drawings of cats more likely to be heads only or the whole body? [I can take a sample of cat drawings, and then sort the drawings into heads vs bodies. From here, I could bootstrap a confidence interval for the population proportion].
  • Is how someone draws a cat linked to the game time? [I can use the same data as above, but compare game times by the two groups I’ve created – head vs bodies. I could bootstrap a confidence interval for the difference of two population means/medians]
  • Is there a relationship between the number of strokes and the pause time for cat drawings? [And what do these two variables actually measure – I’ll need some contextual knowledge!]
  • Do people draw dogs similarly to cats in the Quick, Draw! game? [I could grab new samples of cat and dog drawings, sort all drawings into “heads” or “bodies”, and then bootstrap a confidence interval for the difference of two population proportions]

Check out the tool and explore for yourself here: http://learning.statistics-is-awesome.org/different_strokes/

A little demo of the tool in action!

A simple app that only does three things

Here’s a scenario. You buy a jumbo bag of marshmallows that contains a mix of pink and white colours. Of the 120 in the bag, 51 are pink, which makes you unhappy because you prefer the taste of pink marshmallows.

Time to write a letter of complaint to the company manufacturing the marshmallows?

The thing we work so hard to get our statistics students to believe is that there’s this crazy little thing called chance, and it’s something we’d like them to consider for situations where random sampling (or something like that) is involved.

For example, let’s assume the manufacturing process overall puts equal proportions of pink and white marshmallows in each jumbo bag. This is not a perfect process, there will be variation, so we wouldn’t expect exactly half pink and half white for any one jumbo bag. But how much variation could we expect? We could get students to flip coins, with each flip representing a marshmallow, and heads representing white and tails representing pink. We then can collate the results for 120 marshmallows/flips – maybe the first time we get 55 pink – and discuss the need to do this process again to build up a collection of results. Often we move to a computer-based tool to get more results, faster. Then we compare what we observed – 51 pink – to what we have simulated.


Created using my learning.statistics-is-awesome.org/modelling-tool, yes it should be two-tailed, no my tool doesn’t allow this 🙁

I use these kind of activities with my students, but I wanted something more so I made a very simple app earlier this year. You can find it here: learning.statistics-is-awesome.org/threethings/. You can only do three things with it (in terms of user interactions) but in terms of learning, you can do way more than three things. Have a play!

In particular, you can show that models other than 50% (for the proportion of pink marshmallows) can also generate data (simulated proportions) consistent with the observed proportion. So, not being able to reject the model used for the test (50% pink) doesn’t mean the 50% model is the one true thing. There are others. Like I told my class – just because my husband and I are compatible (and I didn’t reject him), doesn’t mean I couldn’t find another husband similarly compatible.

Note: The app is in terms of percentages, because that aligns to our approach with NZ high school students when using and interpreting survey/poll results. However, I first use counts for any introductory activities before moving to percentages, as demonstrated with this marshmallow example. The app rounds percentages to the closest 1% to keep the focus on key concepts rather than focusing on (misleading) notions of precision. I didn’t design it to be a tool for conducting formal tests or constructing confidence intervals, more to support the reasoning that goes with those approaches.

Upcoming workshop: Using R to explore and exploit features of images

If you’ve been keeping track of my various talks & workshops over the last year or so, you will have noticed that I’ve become a little obsessed with analysing images (see power of pixels and/or read more here).  As part of my PhD research, I’ve been using images to broaden students’ awareness of what is data, and data science, and it’s been so much fun!

If you’re in the Auckland area next week, you could come along to a workshop I’m running for R-Ladies and have some fun yourself using the statistical programming language R to explore images. The details for the workshop and how to sign up are here: https://www.meetup.com/rladies-auckland/events/255112995/

The power of pixels: Using R to explore and exploit features of images

Thursday, Oct 18, 2018, 6:00 PM

G15, Science Building 303, University of Auckland
38 Princes Street Auckland, NZ

30 Members Attending

Kia ora koutou Anna Fergusson, one of our R-ladies Auckland co-organisers, will be the speaker at this meetup. We’ll explore a range of techniques and R packages for working with images, all at an introductory level. Time: 6:00 arrival for a 6:30pm start. What to bring: Laptops with R installed, arrive early if you are a beginner and would like hel…

Check out this Meetup →

This is not a teaching-focused workshop, it’s more about learning fun and cool things you can do with images, like making GIFs like the one below….

Of course it’s a cat!

…. and other cool things, like classifying photos as cats or dogs, or finding the most similar drawing of a duck!

Duck duck stats!

It will be at an introductory level,  and you don’t need to be a “lady” to come along, just supportive of gender diversity in the R community (or more broadly, data science)! If you’ve never used R before, don’t worry – just bring yourself along with a laptop and we’ll look after you 🙂

You say data, I say data cards …

This long weekend (in Auckland anyway!), I spent some time updating the Quick! Draw! sampling tool (read more about it here Cat and whisker plots: sampling from the Quick, Draw! dataset). You may need to clear your browser cache/data to see the most recent version of the sampling tool.

One of the motivations for doing so was a visit to my favourite kind of store – a stationery store – where I saw (and bought!) this lovely gadget:

It’s a circle punch with a 2″/5 cm diameter. When I saw it, my first thought was “oh cool I can make dot-shaped data cards”, like a normal person right?

Using data cards to make physical plots is not a new idea – see censusatschool.org.nz/resource/growing-scatterplots/ by Pip Arnold for one example:

But I haven’t seen dot-shaped ones yet, so this led me to re-develop the Quick! Draw! sampling tool to be able to create some 🙂

I was also motivated to work some more on the tool after the fantastic Wendy Gibbs asked me at the NZAMT (New Zealand Association of Mathematics Teachers) writing camp if I could include variables related to the times involved with each drawing. I suspect she has read this super cool post by Jim Vallandingham (while you’re at his site, check out some of his other cool posts and visualisations) which came out after I first released the sampling tool and compares strokes and drawing/pause times for different words/concepts – including cats and dogs!

So, with Quick! Draw! sampling tool you can now get the following variables for each drawing in the sample:

The drawing and pause times are in seconds. The drawing time captures the time taken for each stroke from beginning to end and the pause time captures all the time between strokes. If you add these two times together, you will get the total time the person spent drawing the word/concept before either the 20 seconds was up, or Google tried to identify the word/concept. Below the word/concept drawn is whether the drawing was correctly recognised (true) or not (false).

I also added three ways to use the data cards once they have been generated using the sampling tool (scroll down to below the data cards). You can now:

  1. download a PDF version of the data cards, with circles the same size as the circle punch shown above (2″/5cm)
  2. download the CSV file for the sample data
  3. show the sample data as a HTML table (which makes it easy to copy and paste into a Google sheet for example)

In terms of options (2) and (3) above, I had resisted making the data this accessible in the previous version of the sampling tool. One of the reasons for this is because I wanted the drawings themselves to be considered as data, and as human would be involved in developed this variable, there was a need to work with just a sample of all the millions of drawings. I still feel this way, so I encourage you to get students to develop at least one new variable for their sample data that is based on a feature of the drawing 🙂 For example, whether the drawing of a cat is the face only, or includes the body too.

There are other cool things possible to expand the variables provided. Students could create a new variable by adding drawing_time and pause_time together. They could also create a variable which compares the number_strokes to the drawing_time e.g. average time per stroke. Students could also use the day_sketched variable to classify sketches as weekday or weekend drawings. Students should soon find the hemisphere is not that useful for comparisons, so could explore another country-related classification like continent. More advanced manipulations could involve working with the time stamps, which are given for all drawings using UTC time. This has consequences for the variable day_sketched as many countries (and places within countries) will be behind or ahead of the UTC time.

If you’ve made it this far in the post…. why not play with a little R 🙂

I wonder which common household pet Quick! drawers tend to use the most strokes to draw? Cats, dogs, or fish?

Have a go at modifying the R code below, using the iNZightPlots package by Tom Elliott and my [very-much-in-its-initial-stages-of-development] iNZightR package, to see what we can learn from the data 🙂 If you’re feeling extra adventurous, why not try modifying the code to explore the relationship between number of strokes and drawing time!

Visualising bootstrap confidence intervals and randomisation tests with VIT Online

Simulation-based inference is taught as part of the New Zealand curriculum for Statistics at school level, specifically the randomisation test and bootstrap confidence intervals. Some of the reasons for promoting and using simulation-based inference for testing and for constructing confidence intervals are that:

  • students are working with data (rather than abstracting to theoretical sampling distributions)
  • students can see the re-randomisation/re-sampling process as it happens
  • the “numbers” that are used (e.g. tail proportion or limits for confidence interval) are linked to this process.

If we work with the output only, for example the final histogram/dot plot of re-sampled/bootstrap differences, in my opinion, we might as well just use a graphics calculator to get the values for the confidence interval 🙂

In our intro stats course, we use the suite of VIT (Visual Inference Tools) designed and developed by Chris Wild to construct bootstrap confidence intervals and perform randomisation tests. Below is an example of the randomisation test “in action” using VIT:

Last year, VIT was made available as a web-based app thanks to ongoing work by Ben Halsted! So, in this short post I’ll show how to use VIT Online with Google sheets – my two favourite tools for teaching simulation-based inference 🙂

1. Create a rectangular data set using a Google sheet. If you’re stuck for data, you can make a copy of this Google sheet which contains giraffe height estimates (see this Facebook post for context – read the comments!)

2. Under File –> Publish to web, choose the following settings (this will temporarily make your Google sheet “public” – just “unpublish” once you have the data in VIT Online)

Be careful to select “Sheet1” or whatever the sheet you have your data in, not “Entire document”. Then, select “Comma-separated values (.csv)” for the type of file. Directly below is the link to your published data which you need to copy for step 3.

3. Head to VIT online –>  https://www.stat.auckland.ac.nz/~wild/VITonline/index.html. Choose “Randomisation test” and copy the link from step 2 into the first text box. Then press the “Data from URL” button.

4. At this point, your data is in VIT online, so you can go back and unpublish your Google sheet by going back to File –> Publish to web, and pressing the button that says “Stop publishing”.

The same steps work to get data from a Google spreadsheet into VIT online for the other modules (bootstrapping etc.).

[Actually, the steps are pretty similar for getting data from a Google spreadsheet into iNZight lite. Copy the published sheet link from step 2 in the appropriately named “paste/enter URL” text box under the File –> Import dataset menu option.]

In terms of how to use VIT online to conduct the randomisation test, I’ll leave you with some videos by Chris Wild to take a look at (scroll down). Before I do, just a couple of differences between the VIT Chris uses and VIT Online and a couple of hints for using VIT Online with students.

You will need to hold down ctrl to select more than one variable before pressing the “Analyse” button e.g. to select both the “Prompt” and “Height estimate in metres” variables in the giraffe data set.

Also, to define the statistic to be tested, in VIT Online you need to press the button that says “Precalculate Display” rather than “Record my choices” as shown in the videos.

Lastly, a really cool thing about VIT Online is that once you have copied over the URL for your published Google sheet, as long as you keep your Google sheet published, you can grab the URL from VIT Online to share with students e.g. https://www.stat.auckland.ac.nz/~wild/VITonline/randomisationTest/RVar.html?file=https://docs.google.com/spreadsheets/d/e/2PACX-1vTcaGSrAbGSntbrUoifNv8g048KJwEnBI–Rmmxqu1N0rb0VRUHoUkIeT-8xo3O9eqTUqZIML_EH523/pub?gid=0&single=true&output=csv&var=%20Prompt,c&var=Height%20estimate%20in%20metres,n. Sure, it’s not the nicest looking URL in the world, so use a URL shortener like bit.ly, goo.gl, tiny.cc etc. if sharing with students to type into their devices.

Note: VIT Online is not optimised to work on small screen devices, due to the nature of the visualisations. For example, it’s important that students can see all three panels at the same time during the process, and can see what is happening!

Now, here are those videos I promised 🙂

Secret statistical snowflakes

Want to make some awesome gift tags/labels for Christmas or holiday-related presents? Here’s a fun little statistical art project. Write whatever words you want in the app below, create some secret snowflakes (the secret part being no one else will know what words you used unless of course you choose to display them), play around with colours if you want (uncheck the option to use random colours), freeze the snowflakes when you get something you like, download your masterpiece and use in some way.

Oh yeah, the snowflakes are made by rotating each letter in the words in a magical statistical way (i.e. randomness).

To make our gift labels, I made the first colour white (the background #ffffff), made the other two colours black (#000000), and then printed on to adhesive sticker paper I had left over from our wedding.

Enjoy and have a great holiday break!

Secret snowflakes app should be shown below (otherwise here is the link) – works best using a Chrome browser 🙂

What’s going on, what’s going on?

For many high school teachers here in New Zealand, the teaching year is over and it’s now a six-week summer break before school starts again next year. Despite the well-deserved break, some teachers are already thinking about ideas for next year. I’ve been amazed (and inspired) by the teachers who have signed up to spend a day with Liza and I on Friday 15th December to learn more about working with modern data (more details here). We are both really looking forward to the full-day workshop 🙂 One of the tools we’ll be working with at the workshop is the platform IFTTT (If This Then That). It’s basically a way to connect devices and online accounts using APIs (application programming interfaces) without using code.

I used IFTTT recently to collect data on New York Times articles. One of the reasons why I started collecting data on New York Times articles was because of their free, online feature “What’s Going On in This Graph?”. On Tuesday, December 12 and every second Tuesday of the month through the US school year, The New York Times Learning Network, in partnership with the American Statistical Association, hosts a live online discussion about a timely graph like the one shown below.

One of the super interesting graphs featured

Students from around the world “read” the graph by posting comments about what they notice and wonder in an online forum.  Teachers live-moderates by responding to the comments in real time and encouraging students to go deeper.  All releases are archived so that teachers can use previous graphs anytime (read this introductory post to learn more). I used “What’s Going On in This Graph?” when I was teaching our Lies, Damned lies and Statistics course, and it is such an awesome resource for helping build statistical literacy and thinking.

So, inspired by the New York Times graphs, about two months ago I created an “applet” on IFTTT that creates a new row in a Google spreadsheet every time a new article is posted to the New York Times website. It stopped working for some reason at the end of November – check out the “raw” data here: https://docs.google.com/spreadsheets/d/1PXGh0xBrJbmrfWq3nRylH5GBqzVd4SYWWiXQj3v9tdQ/edit?usp=sharing 

So what’s going on with the data I collected? Your first thought on viewing the data might be – huh? You call this data? The only variable that is “graph ready” is which section each of the nearly 6000 articles were published in. But there are so many variables in data sets just like this one waiting to be defined and explored. After our workshop on Friday, I’ll post an “after” version of this same data set 🙂

Game of data

This post is second in a series of posts where I’m going to share some strategies for getting real data to use for statistical investigations that require sample to population inference. As I write them, you will be able to find them all on this page.

What’s your favourite board game?

I read an article posted on fivethirtyeight about the worst board games ever invented and it got me thinking about the board games I like to play. The Game of life has a low average rating on the online database of games referred to in this article but I remember kind of enjoying playing it as a kid. boardgamegeek.com features user-submitted information about hundreds of thousands of games (not just board games) and is constantly being updated. While there are some data sets out there that already feature data from this website (e.g. from kaggle datasets), I am purposely demonstrating a non-programming approach to getting this data that maximises the participation of teachers and students in the data collection process.

To end up with data that can be used as part of a sample to population inference task:

  1. You need a clearly defined and nameable population (in this case, all board games listed on boardgamegeek.com)
  2. You need a sampling frame that is a very close match to your population.
  3. You need to select from your sampling frame using a random sampling method to obtain the members of your sample.
  4. You need to define and measure variables from each member of the sample/population so the resulting data is multivariate.

boardgamegeek.com actually provide a link that you can use to select one of the games on their site at random (https://boardgamegeek.com/boardgame/random), so using this “random” link (hopefully) takes care of (2) and (3). For (4), there are so many potential variables that could be defined and measured. To decide on what variables to measure, I spent some time exploring the content of the webpages for a few different games to get a feel for what might make for good variables. I decided to stick to variables that are measured directly for each game, rather than ones that were based on user polls, and went with these variables:

  • Millennium the game was released (1000, 2000, all others)
  • Number of words in game title
  • Minimum number of players
  • Maximum number of players
  • Playing time in minutes (if a range was provided, the average of the limits was used)
  • Minimum age in years
  • Game type (strategy or war, family or children’s, other)
  • Game available in multiple languages (yes or no)

Time to play!

I’ve set up a Google form with instructions of how you can help create a random sample of games from boardgamegeek.com at this link: https://goo.gl/forms/8yBqryGTzrZGhEVx2. As people play along, the sample data will be added here: https://docs.google.com/spreadsheets/d/e/2PACX-1vSzR_VSVzaaeWpCvYbAQCUewaM3Tad2zfTBO7AWuDgFFTj5Jaq2TBo6N-gQGCe5e5t_qKW7Knuq6-pr/pub?gid=552938859&single=true&output=csv . The URL to the game is included so that the data can be checked. Feel free to copy and adapt however you want, but do keep in mind that nature of the variables you use. In particular, be very careful about using any of the aggregate ratings measures (and another great article by fivethirtyeight about movie ratings explains some of the reasons why.)

Bonus round

I wrote a post recently – Just Google it – which featured real data distributions. boardgamegeek.com also provides simple graphs of the ratings for each game, so we can play a similar matching game. You could also try estimating the mean and standard deviation of the ratings from the graph, with the added game feature of reverse ordering!

Which games do you think match which ratings graphs?

  1. Monopoly
  2. The Lord of the Rings: The Card Game
  3. Risk
  4. Tic-tac-toe

A

B

C

D

I couldn’t find a game that had a clear bi-modal distribution for its ratings but I reckon there must be games out there that people either love or hate 🙂 Let me know if you find one! To get students familiar with boardgamegeek.com, you could ask them to first search for their favourite game and then explore what information and ratings have been provided for this on the site. Let the games begin 🙂

Just Google it

Here’s a really quick idea for a matching activity, totally building off Pip Arnold’s excellent work on shape.

At the bottom of this post are six “Popular times” graphs generated today by Google when searching for the following places of interest:

  1. Cafe
  2. Shopping mall
  3. Library
  4. Swimming pool
  5. Gym
  6. Supermarket

Can you match which graphs go with which places? 🙂

[you can find the answers at the bottom]

A

 

B

 

C

 

D

 

E

 

F

Click here to reveal the answers

Finding real data for real data stories

This post is first in a series of posts where I’m going to share some strategies for getting real data for real data stories, specifically to use for statistical investigations that require sample to population inference. As I write them, you will be able to find them all on this page.

Key considerations for finding real data for sample to population inference tasks

It’s really important that I stress that the approaches I’ll discuss are not necessarily what I would typically use when finding data to explore. Generally, I’d let the data drive the analysis not the analysis drive the data I try to find. These are specific examples so that the data that is obtained can be used sensibly to perform sample to population inference. It’s also really important to talk about why I’m stressing the above 🙂 In NZ we have specific standards that are designed to assess understanding of sample to population inference, using informal and formal methods that have developed by exploring the behaviour of random samples from populations (AS91035, AS91264, AS91582). So, for the students’ learning about rules of thumbs and confidence intervals to make sense, we need to provide students with clearly defined named populations with data that are (or are able to be) randomly sampled from these populations. At high school level at least, these strict conditions are in place so that students can focus on one central question: What can and can’t I say about the population(s) based on the random sample data?

For all the examples I’ll cover in this series of posts, there are four key considerations/requirements:

  1. You need a clearly defined and nameable population. Ideally this should be as simple and clear as possible to help students out but to ensure (2) the “name” can end up being quite specific.
  2. You need a sampling frame that is a very close match to your population. This means you need a way to access every member of your population to measure stuff about them (variables). Sure, this is not the reality of what happens in the real world in terms of sampling, but remember what I said earlier about what was important 🙂
  3. You need to select from your sampling frame using a random sampling method to obtain the members of your sample. It is sufficient (and recommended) to stick to simple random sampling. In some cases, you may be able to make an assumption that what you have can be considered a random sample, but I’d prefer to avoid these kinds of situations where possible at high school level.
  4. You need to define and measure variables from each member of the sample/population. We want students working with multivariate data sets, with several options possible for numerical and categorical data (but don’t forget there is the option to create new variables from what was measured).

I’ll try to refer back to these four considerations/requirements when I discuss examples in the posts that will follow.

Just one very relevant NZ NCEA assessment-specific comment before we talk data. For AS91035 and AS91582, the standards state that students are to be provided with the sample multivariate data for the task – so all of (1) (2) (3) and (4) is done by the teacher. Similarly with AS91264, the requirement for the standard is that students select a random sample (3) from a provided population dataset – so (1) (2) and (4) are done by the teacher. This does not mean the students can’t do more in terms of the sampling/collecting processes, just that these are not requirements for the standards and asking students to do more should not limit their ability to complete the task. I’ll try to give some ideas for how to manage any related issues in the examples.

Just one more point. I haven’t made this (5) in the previous section, but something to watch out for is the nature of your “cases”. Tables of data (which we refer to as datasets) that play nicely with statistical software like iNZight are ones where the data is organised so that each row is a case and each column is a variable. Typically at high school level, the datasets we use are ones where each case (e.g. each individual in the defined population) is measured directly to obtain different variables. Things can get a little tricky conceptually when some of the variables for a case are actually measured by grouping/aggregating related but different cases.

For example, if I take five movies from the internet movie database that have “dog” in the title (imdb.com) and another five with “cat” in the title, I could construct a mini dataset like the one below using information from the website:

For this dataset, each row is a different movie, so the cases are the movies. Each column provides a different variable for each movie. The variables Movie title, Year released, Movie length mins, Average rating, Number of ratings, Number photos and Genre were taken straight from the webpage for each movie. I created the variables Number words title, Number letters title, Average letters per word, Animal in title, Years since release and Millennium. [Something I won’t tackle in this post is what to do about the Genre variable to make this usable for analysis.]

The Average rating variable looks like a nice numerical variable to use, for example, to compare ratings of these movies with “dog” in the title and those with “cat”. The thing is, this particular variable has been measured by aggregating individual’s ratings of the movie using a mean (the related but different cases here are the individuals who rated the movies). You can see why this may be an issue when you look at the variable Number of ratings, which again is an aggregate measure (a count) – some of these movies have received less than 200 ratings while others are in the hundreds of thousands. We also can’t see what the distribution of these individual ratings for each movie looks like to decide whether the mean is telling us something useful about the ratings. [For some more really interesting discussion of using online movie ratings, check out this fivethirtyeight article.]

The variable Average letters per word has been measured directly from each case, using the characteristics of the movie title. There are still some potential issues with using the variable Average letters per word as a measure of, let’s say, complexity of words used in the movie title, since the mean is being used, but at least in this case students can see the movie title.

Another example of case awareness can be seen in the mini dataset below, using data on PhD candidates from the University of Auckland online directory:

For this dataset, each row is a different department, so the cases are the departments. Each column provides a different variable for each department. Gender was estimated based on the information provided in the directory and the data may be inaccurate for this reason. The % of PhD candidates that are female looks like a nice numerical variable to use, for example, to compare gender rates between these departments from the Arts and Science faculties. Generally with numerical variables we would use the mean or median as a measure of central tendency. But this variable was measured by aggregating information about each PhD candidate in that department and presenting this measure as a percentage (the related but different cases here are the PhD candidates). Just think about it, does it really make sense to make a statement like: The mean % of PhD candidates that are female for these departments of the Arts faculty is 73% whereas the mean % of PhD candidates that are female for these departments of the Science faculty is 44%, especially when the numbers of PhD candidates varies so much between departments?

Looking at the individual percentages is interesting to see how they vary across departments, but combining them to get an overall measure for each faculty should involve calculating another percentage using the original counts for PhD candidates for each department (e.g. group by faculty). If I want to compare gender rates between the Arts and Science faculties for PhD candidates, I would calculate the proportion of all PhD candidates across these department that are female for each faculty e.g. 58% of the PhD candidates from these departments of the Arts faculty are female, 53% of the PhD candidates from these departments of the Science faculty are female.

[If you’d like to read more about structuring data in the context of creating a dataset, then check out this excellent post by Rob Gould.]

Where to next?

This post was not supposed to deter you from finding and creating your own real datasets! But we do need to think carefully about the data that we provide to students, especially our high school students. Not all datasets are the same and while I’ve seen some really cool and interesting ideas out there for finding/collecting data for investigations, some of these ideas unintentionally produce data that makes it very difficult for students to engage with the core question: What can and can’t I say about the population(s) based on the random sample data? 

In the next post, I’ll discuss some examples of finding real data online. Until I find time to write this next post, check out these existing data finding posts:

Using awesome real data

Cat and whisker plots: sampling from the Quick, Draw! dataset

The power of pixels: Modelling with images